

ISA100 WCI Webinar

Webinar date: March 20, 2024

The presentation will begin at 11:00 EST (UTC-5)

Wireless Steam Trap Monitoring to Reduce Energy Losses and CO2 emissions

Presenter:

Philippe Moock pmoock@armstronginternational.com

- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Roadmap to Decarbonization
- 6. Steam & Condensate Loop
- 7. Cost of Steam
- 8. Steam Trap Failures
- 9. Steam Losses & CO₂ Emissions
- 10. Wireless Monitoring
- 11. Armstrong University
- 12. Conclusion

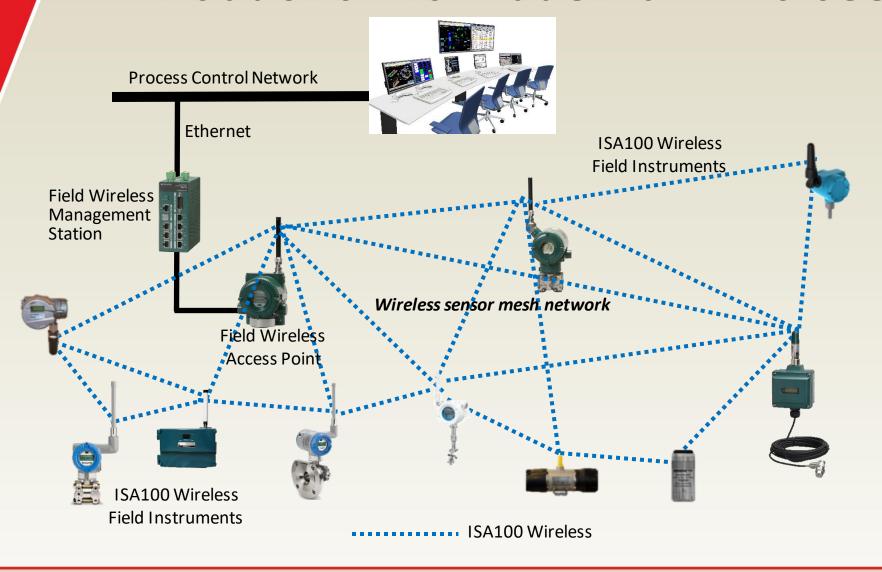
About the Speaker

Philippe Moock
Global Director Thermal Insight Group
Armstrong International

Philippe started his career in factory automation before joining Armstrong in 2011. He currently leads the "Thermal Insight Group" focused on digital transformation of thermal utilities and providing insights to optimized them.

He holds a master in mechanical engineering from Belgium where he is from as well as an MBA from the US. Citizen of the world, he has lived and worked in Belgium, Florida, India, and China before moving to Michigan in 2017. He has also frequently traveled for business, optimizing customers' thermal utilities, in Middle East, Asia, and Africa.

His promise is to deliver intelligent system solutions that improve utility performance, lower energy consumption and reduce environmental emissions while providing an enjoyable experience.



Armstrong

- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Roadmap to Decarbonization
- 6. Steam & Condensate Loop
- 7. Cost of Steam
- 8. Steam Trap Failures
- 9. Steam Losses & CO₂ Emissions
- 10. Wireless Monitoring
- 11. Armstrong University
- 12. Conclusion

Introduction to Industrial Wireless

Applications examples

- Machine health monitoring
- Basic process control
- Monitoring of well heads
- Remote process monitoring
- Leak detection monitoring
- Diagnosis of field devices
- Condition monitoring of equipment
- Environmental monitoring
- Tank level monitoring
- Gas detection
- Fuel tank gauging
- · Steam trap monitoring
- Open loop control
- Stranded data capture
- And more

Armstrong

- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Roadmap to Decarbonization
- 6. Steam & Condensate Loop
- 7. Cost of Steam
- 8. Steam Trap Failures
- 9. Steam Losses & CO₂ Emissions
- 10. Wireless Monitoring
- 11. Armstrong University
- 12. Conclusion

ISA100 Wireless Fast Facts

- International standard IEC 62734 since 2014
- Complies with ETSI EN 300 320 v1.8.1 (LBT)
- End-User Driven Standard meeting all current and future industrial needs
- Sensor routing or field routers for best performance Freedom of choice
- Broad Multi-Vendor Portfolio of ISA100 Wireless Devices
- ISA100 Wireless enables SIL-2 Certification
- Ensured Interoperability best-in-class solutions from best-in-class suppliers
- Readily available ISA100 Wireless Modules and Stacks
- Enable fast-track development and go to market

Benefits of ISA100 Wireless Instrumentation

Cost Savings	 Up to 90% of installed cost of conventional measurement technology can be for cable conduit and related construction Typically: 1/2 the costs, 1/5 of the time New and scaled applications are now economically feasible
Improved Reliability	 Wired sensors may be prone to failure in difficult environment Wireless can add redundancy to a wired solution
Improved Visibility	 Condition monitoring of secondary and remote equipment Process monitoring, fast additional data for trouble shooting
Improved Control	Add wireless to existing processes for more optimal control
Improved Safety	Safety related alarms - end to end SIL2 certifiable

ISA100 Wireless Product Portfolio

Independent Gateway

• Honeywell, Yokogawa

Infrastructure

Access Point (AP)

• Honeywell, Yokogawa

Integrated Gateway/AP

 Honeywell, Yokogawa, CDS, Nexcom

GW/AP + Recorder

• Yokogawa

Adapter (HART, etc.)

• Honeywell, Yokogawa

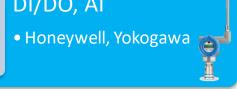
Temperature

• Honeywell, Yokogawa

Pressure / Flow

• Honeywell, Yokogawa

Control


Measurement &

Level

• Honeywell, Yokogawa

DI/DO, AI

Valve Position

• Eltav, Flowserve, Honeywell

Corrosion

Life cycle

+

HSE

Vibration

• GE's Bently Nevada

Gas

На

Armstrong[®]

- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Roadmap to Decarbonization
- 6. Steam & Condensate Loop
- 7. Cost of Steam
- 8. Steam Trap Failures
- 9. Steam Losses & CO₂ Emissions
- 10. Wireless Monitoring
- 11. Armstrong University
- 12. Conclusion

Armstrong International

Founded in 1900

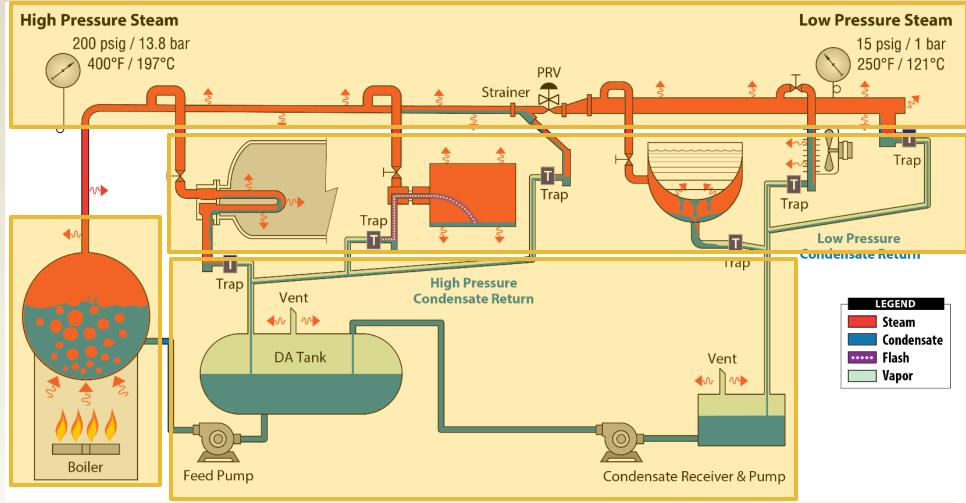

Five Generations of Family Ownership and Leadership

Armstrong International

Armstrong[®]

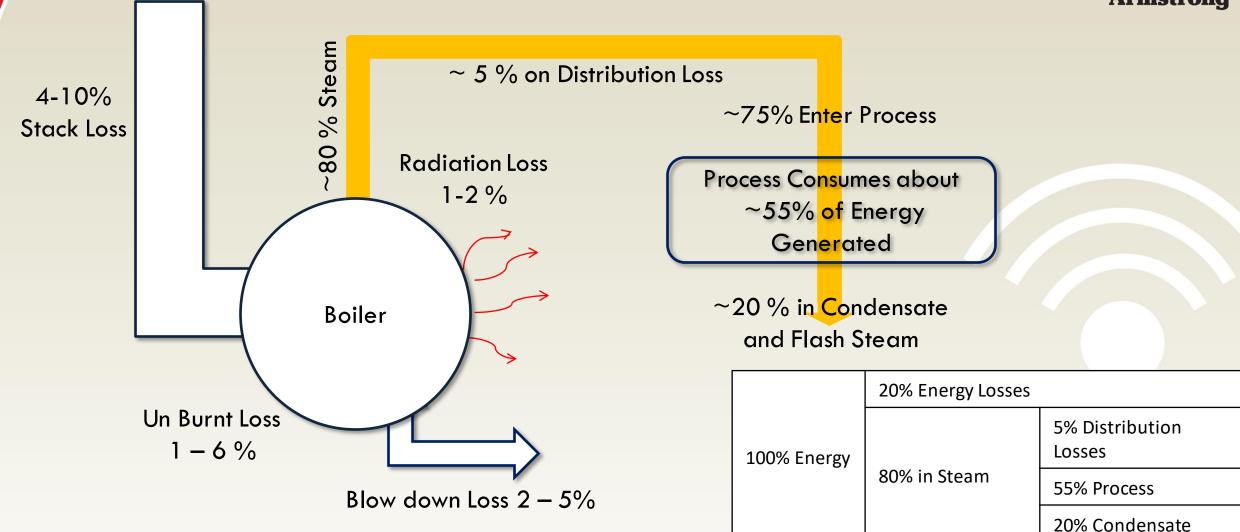
- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Roadmap to Decarbonization
- 6. Steam & Condensate Loop
- 7. Cost of Steam
- 8. Steam Trap Failures
- 9. Steam Losses & CO₂ Emissions
- 10. Wireless Monitoring
- 11. Armstrong University
- 12. Conclusion

Roadmap to Decarbonization


Armstrong[®]

- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Roadmap to Decarbonization
- 6. Steam & Condensate Loop
- 7. Cost of Steam
- 8. Steam Trap Failures
- 9. Steam Losses & CO₂ Emissions
- 10. Wireless Monitoring
- 11. Armstrong University
- 12. Conclusion

Typical Steam and Condensate loop



Typical Steam and Condensate loop

Armstrong

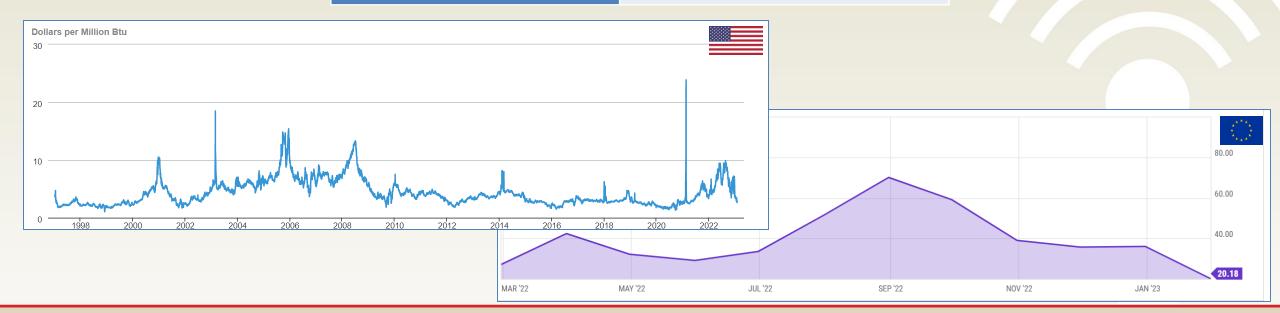
- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Roadmap to Decarbonization
- 6. Steam & Condensate Loop
- 7. Cost of Steam
- 8. Steam Trap Failures
- 9. Steam Losses & CO₂ Emissions
- 10. Wireless Monitoring
- 11. Armstrong University
- 12. Conclusion

Cost of Steam

Cost of steam includes

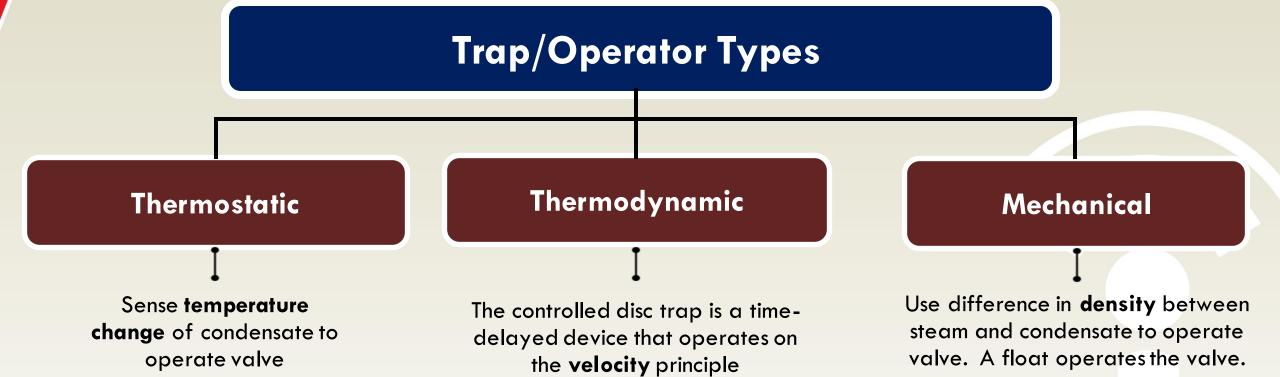
- Fuel
- Make-up water
- Chemicals
- Sewage
- ..

If we only take the fuel cost into consideration:


Heat Cost for 100psig steam [\$/1,000lbs]= **Fuel costs** [\$/MMBtu] / **Boiler Efficiency**

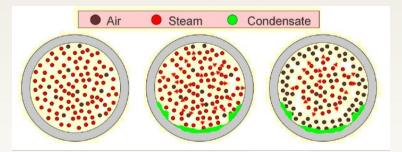
Cost of Steam

Cost of Natural gas	Heat cost for 100psig steam
\$5/MMBtu	\$6.25/1,000lbs
\$10/MMBtu	\$12.50/1,000lbs
\$20/MMBtu	\$25/1,000lbs
\$60/MMBtu	\$120/1,000lbs


Armstrong

- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Roadmap to Decarbonization
- 6. Steam & Condensate Loop
- 7. Cost of Steam
- 8. Steam Trap Failures
- 9. Steam Losses & CO₂ Emissions
- 10. Wireless Monitoring
- 11. Armstrong University
- 12. Conclusion

Steam Traps


Armstrong

- If a steam trap fails closed (cold):
 - Wet steam
 - Water hammering
 - Damaged turbine LP saturated steam stage
 - Piping corrosion
 - Erosion on valves, reducers
 - Flooded heat exchanger
 - Decrease in production
 - Reduced heat transfer
 - Batch process losses
 - Thermal stress
 - Non-Condensable Gases in the system
 - Air is an insulator: heat exchanger less efficient
 - Oxygen in the pipe = corrosion: H₂O + CO₂ -> H₂CO₃ (Carbonic Acid)
 - System binding: flow of steam and condensate can be blocked
 - Temperature drops because steam pressure drops

- If a steam trap **fails open** (leaking or blow-thru):
 - Increased back pressure in condensate return line
 - Reduced flow for surrounding steam traps
 - Stalling surrounding heat exchanger
 - Steam losses (monetary losses)
 - Safety issue
 - Environmental issue

	Service Life (in Years)	Annual Failure Rate	General Industry
Low Pressure (< 75 psig) – Tracing or Drip		50%
Thermodynamic (Disc)	7	14%	20%
Inverted Bucket	15	7%	15%
Bimetallic	10	10%	30%
Wafer or Bellow	8	13%	25%
Float & Thermostatic	8	13%	10%

Medium Pressui	45%		
Thermodynamic (Disc)	5	20%	40%
Inverted Bucket	10	10%	10%
Bimetallic	8	13%	0%
Wafer or Bellow	5	20%	0%
Float & Thermostatic	5	20%	50%

High Pressure	5%		
Thermodynamic (Disc)	3	33%	60%
Inverted Bucket	7	14%	20%
Bimetallic	6	17%	10%
Wafer or Bellow	3	33%	0%
Float & Thermostatic	6	17%	10%

Annual Failure Rate	14.6%
---------------------	-------

		AI				
	Service Life (in Years)	Annual Failure Rate	Heavy Industry			
Low Pressure (75%				
Thermodynamic (Disc)	7	14%	20%			
Inverted Bucket	15	7%	15%			
Bimetallic	10	10%	30%			
Wafer or Bellow	8	13%	25%			
Float & Thermostatic	8	13%	10%			
Medium Pressure (75 – 200 psig) – Process						
Thermodynamic (Disc)	5	20%	40%			
Inverted Bucket	10	10%	10%			
Float & Thermostatic	5	20%	50%			
High Pressu	re (200 – 400 psig) – Drip		5%			
Thermodynamic (Disc)	3	33%	60%			
Inverted Bucket	7	14%	20%			
Bimetallic	6	17%	10%			
Float & Thermostatic	6	17%	10%			
Superheated S	steam Pressure (> 400 psig)		15%			
Thermodynamic (Disc)	2	50%	33%			
Inverted Bucket	3	33%	2%			
Bimetallic	7	14%	65%			
Annual Failure Rate	12.8	%				

Armstrong

- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Roadmap to Decarbonization
- 6. Steam & Condensate Loop
- 7. Cost of Steam
- 8. Steam Trap Failures
- 9. Steam Losses & CO₂ Emissions
- 10. Wireless Monitoring
- 11. Armstrong University
- 12. Conclusion

$$L_{t,y} = \frac{1kg}{2.2046lbs} FT_{t,y}FS_{t,y}CV_{t,y}h_{t,y}\sqrt{(P_{in,t} - P_{out,t})(P_{in,t} + P_{out,t})}$$

Lt,y the loss of steam due to the steam trap t during the period y in kg of steam.

FTt,y the failure type factor of steam trap t during the period y.

FSt,y the service factor of steam trap t during the period y.

CVt,y the flow coefficient of steam trap t during the period y.

ht,y the hours steam trap t is operating during the period y in hours.

Pin,t the pressure of the steam at the inlet of steam trap t in psia.

Pout,t the pressure of the condensate at the outlet of steam trap t in psia.

Lt,y the loss of steam due to the steam trap t during the period y in kg of steam.

FTt,y the failure type factor of steam trap t during the period y.

FSt,y the service factor of steam trap t during the period y.

CVt,y the flow coefficient of steam trap t during the period y.

ht,y the hours steam trap t is operating during the period y in hours.

Pin,t the pressure of the steam at the inlet of steam trap t in psia.

Pout,t the pressure of the condensate at the outlet of steam trap t in psia.

$$L = 24 \frac{1kg}{2.2046lbs} FT FS CV \sqrt{(P_{in} - P_{out})(P_{in} + P_{out})}$$

L the loss of steam in kg of steam.

FT the failure type factor during the period y.

FS the service factor.

CV the flow coefficient.

h the hours the steam trap is operating in hours.

Pin the pressure of the steam at the inlet of the steam trap in psia.

Pout the pressure of the condensate at the outlet of the steam trap in psia.

$$L = 24 \frac{1kg}{2.2046lbs} FT FS CV \sqrt{(P_{in} - P_{out})(P_{in} + P_{out})}$$

Type of failure	FT
Blow-thru (BT)	1
Leaking (LK)	0.25
Rapid cycling (RC)	0.2

Application	FS
Process steam traps	0.9
Drip and tracer steam traps	1.4
Steam flow (no condensate)	2.1

$$CV = 22.1 D^2$$

CV the flow coefficient.

D the diameter of the orifice of the steam trap in inches

Steam Losses [lbs/day] - UNFCCC

		psig						
Orifice	15	30	60	100	150	250	400	600
#60	31	46	77	118	1 59	272	427	632
3/64"	42	63	106	162	2 33	374	586	869
1/16"	75	112	188	288	4 4	665	1,042	1,544
5/64"	117	175	293	450	6 6	1,039	1,628	2,413
3/32"	168	253	422	648	9 31	1,496	2,344	3,474
#38	197	296	495	760	1 (91	1,754	2,747	4,072
7/64"	220	044	575	002	1,267	2,036	3,190	4,729
1/8"	298	449	751	1,153	1,655	2,000	4,167	6,177
9/64"	378	568	950	1,459	2,095	3,366	5,274	7,817
5/32"	466	702	1,173	1,801	2,586	4,156	6,511	9,651
11/64"	564	849	1,419	2,179	3,129	5,029	7,878	11,678
3/16"	671	1,011	1,689	2,593	3,724	5,984	9,376	13,897
7/32"	914	1,376	2,299	3,530	5,068	8,145	12,761	18,916
1/4"	1,194	1,797	3,002	4,610	6,620	10,639	16,668	24,706
9/32"	1,511	2,274	3,800	5,835	8,378	13,465	21,095	31,269
5/16"	1,865	2,807	4,691	7,203	10,343	16,623	26,043	38,603

\$10/1,000 lbs.

\$4,625/year

Steam Losses [lbs/day] - UNFCCC

		psig						
Orifice	15	30	60	100	150	250	400	600
#60	31	46	77	118	169	272	427	632
3/64"	4 2	63	106	162	233	374	586	869
1/16"	7 5	112	188	288	414	665	1,042	1,544
5/64"	1 7	175	293	450	646	1,039	1,628	2,413
3/32"	1 8	253	422	648	931	1,496	2,344	3,474
#38	1 7	296	495	760	1,091	1,754	2,747	4,072
7/64"	2 8	344	575	882	1,267	2,036	3,190	4,729
1/8"	2 8	449	751	1,153	1,655	2,660	4,167	6,177
9/64"	3 '8	568	950	1,459	2,095	3,366	5,274	7,817
5/32"	4 6	702	1,173	1,801	2,586	4,156	6,511	9,651
11/64"	5 4	849	1,419	2,179	3,129	5,029	7,878	11,678
3/16"	671	1,011	1,000	2,503	2,724	5,004	0,276	13,907
7/32"	914	1,376	2,299	3,530	5,068	8,145	12,761	18,916
1/4"	1,194	1,797	3,002	4,610	6,620	10,639	16,668	24,706
9/32"	1,511	2,274	3,800	5,835	8,378	13,465	21,095	31,269
5/16"	1,865	2,807	4,691	7,203	10,343	16,623	26,043	38,603

CO₂ Emissions

Carbon Dioxide Emissions Coefficients by Fuel

Carbon Dioxide (CO ₂) Factors	Pounds CO ₂ per Million BTU
Natural Gas	116.65
Coal (All types)	211.47
Residual Heating Fuel	165.55

https://www.eia.gov/environment/emissions/co2_vol_mass.php

CO₂ Emissions

1,000lbs of steam per day = 1,188,800 BTU @ 100psig

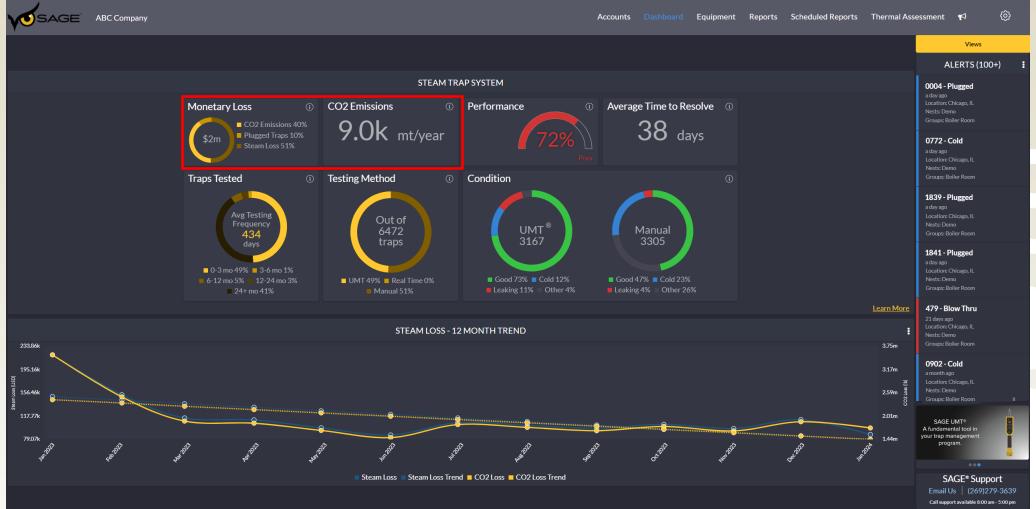
Boiler efficiency = 82% → need 1,449,756 BTU of natural gas per day

- \rightarrow 169 lbs of CO₂ per day
- \rightarrow 0.077 metric ton of CO₂ per day = 28 metric tons per year

Cost of CO_2 emissions = \$50/metric ton

→ \$1,400/year

CO₂ Emissions [metric ton/day]



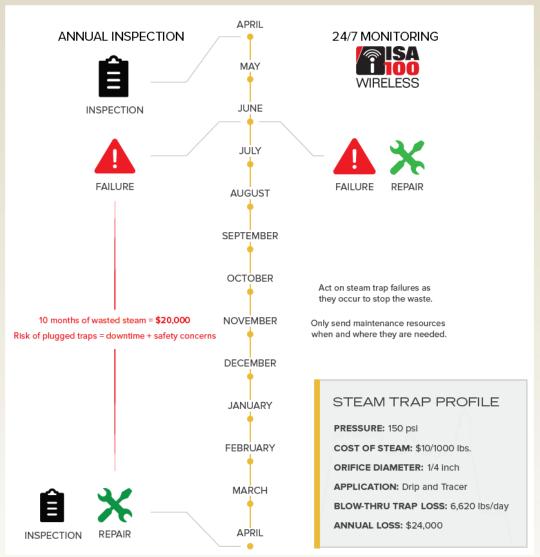
	psig							
Orifice	15	30	60	100	150	250	400	600
#60	0.002	0.003	0.006	0.009	0.013	0.021	0.033	0.049
3/64"	0.003	0.005	800.0	0.012	0.018	0.029	0.046	0.067
1/16"	0.006	0.008	0.014	0.022	0.032	0.052	0.081	0.120
5/64"	0.009	0.013	0.022	0.035	0.050	0.081	0.127	0.187
3/32"	0.013	0.019	0.032	0.050	0.072	0.116	0.182	0.270
#38	0.015	0.022	0.038	0.058	0.084	0.136	0.214	0.316
7/64"	0.017	0.026	0.044	0.068	0.098	0.158	0.248	0.367
1/8"	0.022	0.034	0.057	0.088	0.128	0.206	0.324	0.480
9/64"	0.028	0.043	0.072	0.112	0.162	0.261	0.410	0.607
5/32"	0.035	0.053	0.089	0.138	0.200	0.322	0.506	0.749
11/64"	0.042	0.064	0.108	0.167	0.241	0.390	0.612	0.907
3/16"	0.050	0.076	0.129	0.199	0.287	0.464	0.729	1.079
7/32"	0.069	0.104	0.175	0.271	0.391	0.632	0.992	1.469
1/4"	0.090	0.136	0.229	0.354	0.511	0.825	1.295	1.918
9/32"	0.113	0.172	0.290	0.448	0.646	1.044	1.640	2.428
5/16"	0.140	0.212	0.357	0.553	0.798	1.289	2.024	2.997

Steam Losses & CO₂ Emissions

Agenda

Armstrong

- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Roadmap to Decarbonization
- 6. Steam & Condensate Loop
- 7. Cost of Steam
- 8. Steam Trap Failures
- 9. Steam Losses & CO₂ Emissions
- 10. Wireless Monitoring
- 11. Armstrong University
- 12. Conclusion



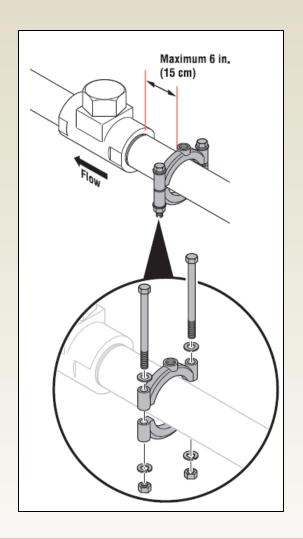
Why Wireless Monitoring?

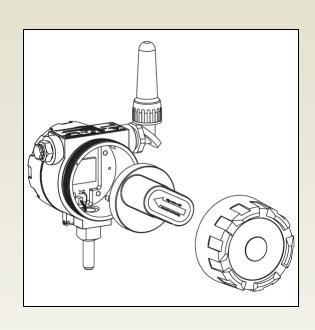
Armstrong Intelligent Monitoring (AIM®)

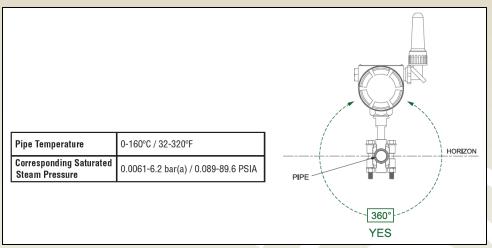
- ST6700 model
- Launched in 2016
- NAMUR NE107 compliant
- 4-year battery life
- Non-intrusive installation
- Class I, Division 1 ATEX Zone 0

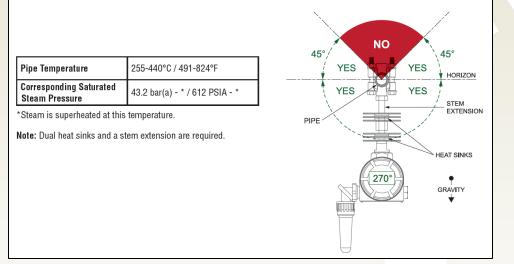
Channel	Description	
#9	Steam Trap Condition: 1=OK, 2=COLD, 3=BLOW-THRU	
#10	Current Temperature (°C or °F)	
#11	Temperature Set Point (°C or °F)	
100 L NAMUD NE107 diagnostics available including battery life		

100+ NAMUR NE10/ diagnostics available including battery life








Armstrong Intelligent Monitoring (AIM®)

Armstrong Intelligent Monitoring (AIM®)

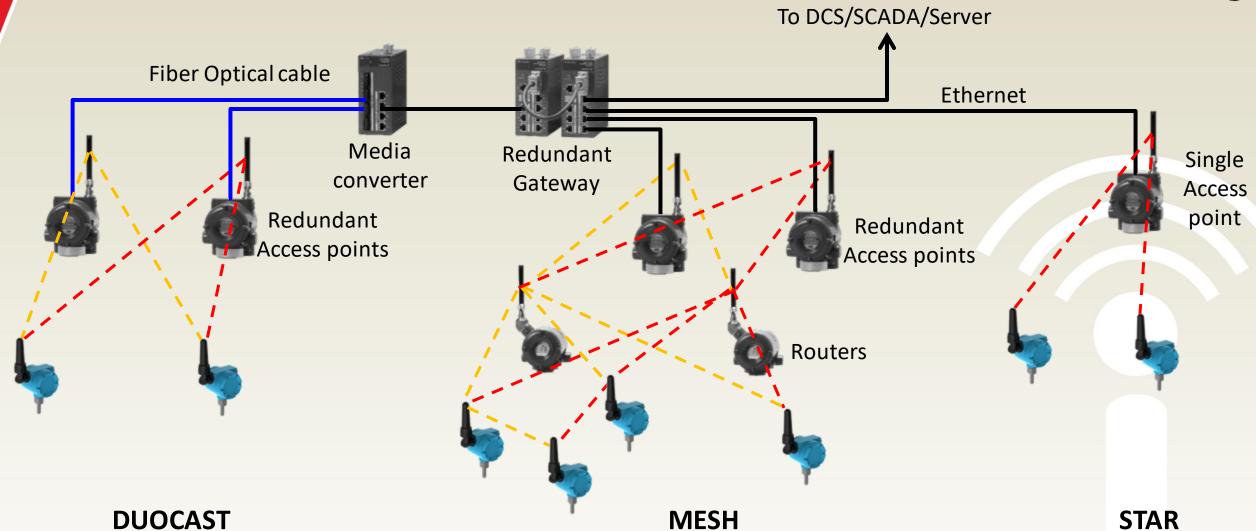
United States Intrinsic Safe for Class I/II/III, Division 1, Groups A, B, C, D, E, F, and G

Zone 0, for Class I, Group IIC

Temperature Code: T4 [275°F (135°C)]

Ambient Temperature Range: T_{amb} -40°C to 70°C (-40°F to 158°F) For use with Armstrong model D64519 lithium metal battery only

Standards used for Compliance:


UL 913, Ed. 8; UL 60079-0, Ed. 7; UL 60079-11, Ed. 6

Ingress Protection Rating	IP66
Output Signal	ISA100.11a protocol over 2.45-GHz, ISM radio band
Temperature Operating Range	-40°C to 70°C (-40°F to 158°F)
Materials of Construction	Housing – Low Cu, Al alloy Paint – Powder Coat O-ring – EPDM Stem – 304 SS Antenna – Nylon 6,6 Nameplate – 316 SS
Battery Type	Encapsulated, Lithium Metal Cells
Weight	4.1 lbs (1.9 Kg)

ISA100 Wireless Infrastructure

Agenda

Armstrong

- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Roadmap to Decarbonization
- 6. Steam & Condensate Loop
- 7. Cost of Steam
- 8. Steam Trap Failures
- 9. Steam Losses & CO₂ Emissions
- 10. Wireless Monitoring
- 11. Armstrong University
- 12. Conclusion

ARMSTRONG UNIVERSITY

Knowledge Not Shared is Energy Wasted.®

Armstrong University Onsite

Agenda

Armstrong[®]

- 1. About the speaker
- 2. Introduction Industrial Wireless
- 3. ISA100 Wireless Industry Standard
- 4. Armstrong International
- 5. Roadmap to Decarbonization
- 6. Steam & Condensate Loop
- 7. Cost of Steam
- 8. Steam Trap Failures
- 9. Steam Losses & CO₂ Emissions
- 10. Wireless Monitoring
- 11. Armstrong University
- 12. Conclusion

ISA100 Wireless Adoption Development Eco-system

WCI ISA100 Wireless Rapid Development Kit

- Everything you need to develop an ISA100 Wireless (IEC 62734) connected field instrument
- Develop ISA100 Wireless (IEC 62734) compliant and certifiable field instruments with minimal effort using application layer code provided
- Includes reference hardware design for ISA100 Wireless (IEC 62734) field instrument implementation
- Certified WISA modules run ISA100 Wireless communication stack
- User friendly SPiN development board includes OLED display and a large variety of sensors

https://centerotech.com/product/wci-isa100-rapid-development-kit/

Online Resources

- Learning Center with White Papers
- Articles, End-user stories, Forum
- Receiving over 20,000 web views per month
- Full list of certified/registered ISA100 Wireless devices
- And more useful content for you and your business

Linked in ISA100 Wireless Interest Group

- Latest news, end-user and expert discussions, insights
- 1100 members and growing; please join and invite your peers to join as well!
- Receiving over 5,000 web views per month
- Limited Time Offer: Join the group and you will be entered in a prize draw to win a new iPad

ISA100 Wireless Linked in Interest Group

Limited Time Promotion

SCAN ME

Scan the QR code and join the ISA100 Wireless Linkedin group. If you join during our limited time offer, you will be entered in a prize draw to win a new iPad!

Questions?

www.isa100wci.org

ISA100 Wireless Interest Group Linked in

1100+ members and growing; please join and invite your peers to join as well!

Philippe Moock

pmoock@armstronginternational.com

+1 269 816 5288

